Как исследовать функцию на непрерывность? Непрерывная функция Определить непрерывна ли функция.

Приводятся определения и формулировки основных теорем и свойств непрерывной функции одной переменной. Рассмотрены свойства непрерывной функции в точке, на отрезке, предел и непрерывность сложной функции, классификация точек разрыва. Даны определения и теоремы, связанные с обратной функцией. Изложены свойства элементарных функций.

Содержание

Можно сформулировать понятие непрерывности в терминах приращений . Для этого мы вводим новую переменную , которая называется приращением переменной x в точке . Тогда функция непрерывна в точке , если
.
Введем новую функцию:
.
Ее называют приращением функции в точке . Тогда функция непрерывна в точке , если
.

Определение непрерывности справа (слева)
Функция f(x) называется непрерывной справа (слева) в точке x 0 , если она определена на некоторой правосторонней (левосторонней) окрестности этой точки, и если правый (левый) предел в точке x 0 равен значению функции в x 0 :
.

Теорема об ограниченности непрерывной функции
Пусть функция f(x) непрерывна в точке x 0 . Тогда существует такая окрестность U(x 0) , на которой функция ограничена.

Теорема о сохранении знака непрерывной функции
Пусть функция непрерывна в точке . И пусть она имеет положительное (отрицательное) значение в этой точке:
.
Тогда существует такая окрестность точки , на которой функция имеет положительное (отрицательное) значение:
при .

Арифметические свойства непрерывных функций
Пусть функции и непрерывны в точке .
Тогда функции , и непрерывны в точке .
Если , то и функция непрерывна в точке .

Свойство непрерывности слева и справа
Функция непрерывна в точке тогда и только тогда, когда она непрерывна в справа и слева.

Доказательства свойств приводятся на странице «Свойства непрерывных в точке функций ».

Непрерывность сложной функции

Теорема о непрерывности сложной функции
Пусть функция непрерывна в точке . И пусть функция непрерывна в точке .
Тогда сложная функция непрерывна в точке .

Предел сложной функции

Теорема о пределе непрерывной функции от функции
Пусть существует предел функции при , и он равен :
.
Здесь точка t 0 может быть конечной или бесконечно удаленной: .
И пусть функция непрерывна в точке .
Тогда существует предел сложной функции , и он равен :
.

Теорема о пределе сложной функции
Пусть функция имеет предел и отображает проколотую окрестность точки на проколотую окрестность точки . Пусть функция определена на этой окрестности и имеет на ней предел .
Здесь - конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Тогда существует предел сложной функции и он равен :
.

Точки разрыва

Определение точки разрыва
Пусть функция определена на некоторой проколотой окрестности точки . Точка называется точкой разрыва функции , если выполняется одно из двух условий:
1) не определена в ;
2) определена в , но не является в этой точке.

Определение точки разрыва 1-го рода
Точка называется точкой разрыва первого рода , если является точкой разрыва и существуют конечные односторонние пределы слева и справа :
.

Определение скачка функции
Скачком Δ функции в точке называется разность пределов справа и слева
.

Определение точки устранимого разрыва
Точка называется точкой устранимого разрыва , если существует предел
,
но функция в точке или не определена, или не равна предельному значению: .

Таким образом, точка устранимого разрыва - это точка разрыва 1-го рода, в которой скачек функции равен нулю.

Определение точки разрыва 2-го рода
Точка называется точкой разрыва второго рода , если она не является точкой разрыва 1-го рода. То есть если не существует, хотя бы одного одностороннего предела, или хотя бы один односторонний предел в точке равен бесконечности.

Свойства функций, непрерывных на отрезке

Определение функции, непрерывной на отрезке
Функция называется непрерывной на отрезке (при ), если она непрерывна во всех точках открытого интервала (при ) и в точках a и b , соответственно.

Первая теорема Вейерштрасса об ограниченности непрерывной на отрезке функции
Если функция непрерывна на отрезке , то она ограничена на этом отрезке.

Определение достижимости максимума (минимума)
Функция достигает своего максимума (минимума) на множестве , если существует такой аргумент , для которого
для всех .

Определение достижимости верхней (нижней) грани
Функция достигает своей верхней (нижней) грани на множестве , если существует такой аргумент , для которого
.

Вторая теорема Вейерштрасса о максимуме и минимуме непрерывной функции
Непрерывная на отрезке функция достигает на нем своих верхней и нижней граней или, что тоже самое, достигает на отрезке своего максимума и минимума.

Теорема Больцано - Коши о промежуточном значении
Пусть функция непрерывна на отрезке . И пусть C есть произвольное число, находящееся между значениями функции на концах отрезка: и . Тогда существует точка , для которой
.

Следствие 1
Пусть функция непрерывна на отрезке . И пусть значения функции на концах отрезка имеют разные знаки: или . Тогда существует точка , значение функции в которой равно нулю:
.

Следствие 2
Пусть функция непрерывна на отрезке . И пусть . Тогда функция принимает на отрезке все значения из и только эти значения:
при .

Обратные функции

Определение обратной функции
Пусть функция имеет область определения X и множество значений Y . И пусть она обладает свойством:
для всех .
Тогда для любого элемента из множества Y можно поставить в соответствие только один элемент множества X , для которого . Такое соответствие определяет функцию, которая называется обратной функцией к . Обратная функция обозначается так:
.

Из определения следует, что
;
для всех ;
для всех .

Лемма о взаимной монотонности прямой и обратной функций
Если функция строго возрастает (убывает) , то существует обратная функция , которая также строго возрастает (убывает).

Свойство о симметрии графиков прямой и обратной функций
Графики прямой и обратной функций симметричны относительно прямой .

Теорема о существовании и непрерывности обратной функции на отрезке
Пусть функция непрерывна и строго возрастает (убывает) на отрезке . Тогда на отрезке определена и непрерывна обратная функция , которая строго возрастает (убывает).

Для возрастающей функции . Для убывающей - .

Теорема о существовании и непрерывности обратной функции на интервале
Пусть функция непрерывна и строго возрастает (убывает) на открытом конечном или бесконечном интервале . Тогда на интервале определена и непрерывна обратная функция , которая строго возрастает (убывает).

Для возрастающей функции .
Для убывающей: .

Аналогичным образом можно сформулировать теорему о существовании и непрерывности обратной функции на полуинтервале.

Свойства и непрерывность элементарных функций

Элементарные функции и обратные к ним непрерывны на своей области определения. Далее мы приводим формулировки соответствующих теорем и даем ссылки на их доказательства.

Показательная функция

Показательная функция f(x) = a x , с основанием a > 0 - это предел последовательности
,
где есть произвольная последовательность рациональных чисел, стремящаяся к x :
.

Теорема. Свойства показательной функции
Показательная функция имеет следующие свойства:
(П.0) определена, при , для всех ;
(П.1) при a ≠ 1 имеет множество значений ;
(П.2) строго возрастает при , строго убывает при , является постоянной при ;
(П.3) ;
(П.3*) ;
(П.4) ;
(П.5) ;
(П.6) ;
(П.7) ;
(П.8) непрерывна для всех ;
(П.9) при ;
при .

Логарифм

Логарифмическая функция, или логарифм, y = log a x , с основанием a - это функция, обратная к показательной функции с основанием a .

Теорема. Свойства логарифма
Логарифмическая функция с основанием a , y = log a x , имеет следующие свойства:
(Л.1) определена и непрерывна, при и , для положительных значений аргумента,;
(Л.2) имеет множество значений ;
(Л.3) строго возрастает при , строго убывает при ;
(Л.4) при ;
при ;
(Л.5) ;
(Л.6) при ;
(Л.7) при ;
(Л.8) при ;
(Л.9) при .

Экспонента и натуральный логарифм

В определениях показательной функции и логарифма фигурирует постоянная a , которая называется основанием степени или основанием логарифма. В математическом анализе, в подавляющем большинстве случаев, получаются более простые вычисления, если в качестве основания использовать число e :
.
Показательную функцию с основанием e называют экспонентой: , а логарифм по основанию e - натуральным логарифмом: .

Свойства экспоненты и натурального логарифма изложены на страницах
«Экспонента, е в степени х »,
«Натуральный логарифм, функция ln x »

Степенная функция

Степенная функция с показателем степени p - это функция f(x) = x p , значение которой в точке x равно значению показательной функции с основанием x в точке p .
Кроме этого, f(0) = 0 p = 0 при p > 0 .

Здесь мы рассмотрим свойства степенной функции y = x p при неотрицательных значениях аргумента . Для рациональных , при нечетных m , степенная функция определена и для отрицательных x . В этом случае, ее свойства можно получить, используя четность или нечетность.
Эти случаи подробно рассмотрены и проиллюстрированы на странице «Степенная функция, ее свойства и графики ».

Теорема. Свойства степенной функции (x ≥ 0)
Степенная функция, y = x p , с показателем p имеет следующие свойства:
(С.1) определена и непрерывна на множестве
при ,
при ».

Тригонометрические функции

Теорема о непрерывности тригонометрических функций
Тригонометрические функции: синус (sin x ), косинус (cos x ), тангенс (tg x ) и котангенс (ctg x

Теорема о непрерывности обратных тригонометрических функций
Обратные тригонометрические функции: арксинус (arcsin x ), арккосинус (arccos x ), арктангенс (arctg x ) и арккотангенс (arcctg x ), непрерывны на своих областях определения.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

См. также:

Пусть точка a принадлежит области задания функции f(x) и любая ε -окрестность точки a содержит отличные от a точки области задания функции f(x) , т.е. точка a является предельной точкой множества {x} , на котором задана функция f(x) .

Определение . Функция f(x) называется непрерывной в точке a , если функция f(x) имеет в точке a предел и этот предел равен частному значению f(a) функции f(x) в точке a .

Из этого определения имеем следующее условие непрерывности функции f(x) в точке a :

Так как , то мы можем записать

Следовательно, для непрерывной в точке a функции символ предельного перехода и символ f характеристики функции можно менять местами.

Определение . Функция f(x) называется непрерывной справа (слева) в точке a , если правый (левый) предел этой функции в точке a существует и равен частному значению f(a) функции f(x) в точке a .

Тот факт, что функция f(x) непрерывна в точке a справа записывают так:

А непрерывность функции f(x) в точке a слева записывают как:

Замечание . Точки, в которых функция не обладает свойством непрерывности, называются точками разрыва этой функции.

Теорема . Пусть на одном и том же множестве заданы функции f(x) и g(x) , непрерывные в точке a . Тогда функции f(x)+g(x) , f(x)-g(x) , f(x) · g(x) и f(x)/g(x) - непрерывны в точке a (в случае частного нужно дополнительно требовать g(a) ≠ 0 ).

Непрерывность основных элементарных функций

1) Степенная функция y=x n при натуральном n непрерывна на всей числовой прямой.

Сначала рассмотрим функцию f(x)=x . По первому определению предела функции в точке a возьмем любую последовательность {x n } , сходящуюся к a , тогда соответствующая последовательность значений функций {f(x n)=x n } также будет сходиться к a , то есть , то есть функция f(x)=x непрерывная в любой точек числовой прямой.

Теперь рассмотрим функцию f(x)=x n , где n - натуральное число, тогда f(x)=x · x · … · x . Перейдем к пределу при x → a , получим , то есть функция f(x)=x n непрерывна на числовой прямой.

2) Показательная функция.

Показательная функция y=a x при a>1 является непрерывной функцией в любой точке бесконечной прямой.

Показательная функция y=a x при a>1 удовлетворяет условиям:

3) Логарифмическая функция.

Логарифмическая функция непрерывна и возрастает на всей полупрямой x>0 при a>1 и непрерывна и убывает на всей полупрямой x>0 при 0, причем

4) Гиперболические функции.

Гиперболическими функциями называются следующие функции:

Из определения гиперболических функции следует, что гиперболический косинус, гиперболический синус и гиперболический тангенс заданы на всей числовой оси, а гиперболический котангенс определен всюду на числовой оси, за исключением точки x=0 .

Гиперболические функции непрерывны в каждой точке области их задания (это следует из непрерывности показательной функции и теоремы об арифметических действиях).

5) Степенная функция

Степенная функция y=x α =a α log a x непрерывна в каждой точке открытой полупрямой x>0 .

6) Тригонометрические функции.

Функции sin x и cos x непрерывны в каждой точке x бесконечной прямой. Функция y=tg x (kπ-π/2,kπ+π/2) , а функция y=ctg x непрерывна на каждом из интервалов ((k-1)π,kπ) (здесь всюду k - любое целое число, т.е. k=0, ±1, ±2, …) .

7) Обратные тригонометрические функции.

Функции y=arcsin x и y=arccos x непрерывны на отрезке [-1, 1] . Функции y=arctg x и y=arcctg x непрерывны на бесконечной прямой.

Два замечательных предела

Теорема . Предел функции (sin x)/x в точке x=0 существует и равен единице, т.е.

Этот предел называется первым замечательным пределом .

Доказательство . При 0 справедливы неравенства 0<\sin x. Разделим эти неравенства на sin x , тогда получим

Эти неравенства справедливы также и для значений x , удовлетворяющих условиям -π/2. Это следует из того, что cos x=cos(-x) и . Так как cos x - непрерывная функция, то . Таким образом, для функций cos x , 1 и в некоторой δ -окрестности точки x=0 выполняются все условия теорем. Следовательно, .

Теорема . Предел функции при x → ∞ существует и равен числу e :

Этот предел называется вторым замечательным пределом .

Замечание . Верно также, что

Непрерывность сложной функции

Теорема . Пусть функция x=φ(t) непрерывна в точке a , а функция y=f(x) непрерывна в точке b=φ(a) . Тогда сложная функция y=f[φ(t)]=F(t) непрерывна в точке a .

Пусть x=φ(t) и y=f(x) - простейшие элементарные функции, причем множество значений {x} функции x=φ(t) является областью задания функции y=f(x) . Как мы знаем, элементарные функции непрерывны в каждой точке области задания. Поэтому по предыдущей теореме сложная функция y=f(φ(t)) , то есть суперпозиция двух элементарных функций, непрерывна. Например, функция непрерывна в любой точке x ≠ 0 , как сложная функция от двух элементарных функций x=t -1 и y=sin x . Также функция y=ln sin x непрерывна в любой точке интервалов (2kπ,(2k+1)π) , k ∈ Z (sin x>0 ).

Процесс исследования функции на непрерывность неразрывно связан с навыком нахождения односторонних пределов функции. Поэтому, чтобы приступить к изучению материала данной статьи, желательно предварительно разобрать тему предела функции.

Определение 1

Функция f (x) является непрерывной в точке x 0 , если предел слева равен пределу справа и совпадает со значением функции в точке x 0 , т.е.: lim x → x 0 - 0 f (x) = lim x → x 0 + 0 f (x) = f (x 0)

Данное определение позволяет вывести следствие: значение предела функции в точках непрерывности совпадает со значением функции в этих точках.

Пример 1

Дана функция f (x) = 1 6 (x - 8) 2 - 8 . Необходимо доказать ее непрерывность в точке х 0 = 2 .

Решение

В первую очередь, определим существование предела слева. Чтобы это сделать, используем последовательность аргументов х n , сводящуюся к х 0 = 2 · (х n < 2) . Например, такой последовательностью может быть:

2 , 0 , 1 , 1 1 2 , 1 3 4 , 1 7 8 , 1 15 16 , . . . , 1 1023 1024 , . . . → 2

Соответствующая последовательность значений функций выглядит так:

f (- 2) ; f (0) ; f (1) ; f 1 1 2 ; f 1 3 4 ; f 1 7 8 ; f 1 15 16 ; . . . ; f 1 1023 1024 ; . . . = = 8 . 667 ; 2 . 667 ; 0 . 167 ; - 0 . 958 ; - 1 . 489 ; - 1 . 747 ; - 1 . 874 ; . . . ; - 1 . 998 ; . . . → - 2

на чертеже они обозначены зеленым цветом.

Достаточно очевидно, что такая последовательность сводится к - 2 , значит lim x → 2 - 0 1 6 (x - 8) 2 - 8 = - 2 .

Определим существование предела справа: используем последовательность аргументов х n , сводящуюся к х 0 = 2 (х n > 2) . Например, такой последовательностью может быть:

6 , 4 , 3 , 2 1 2 , 2 1 4 , 2 1 8 , 2 1 16 , . . . , 2 1 1024 , . . . → 2

Соответствующая последовательность функций:

f (6) ; f (4) ; f (3) ; f 2 1 2 ; f 2 1 4 ; f 2 1 8 ; f 2 1 16 ; . . . ; f 2 1 1024 ; . . . = = - 7 . 333 ; - 5 . 333 ; - 3 . 833 ; - 2 . 958 ; - 2 . 489 ; - 2 . 247 ; - 2 . 247 ; - 2 . 124 ; . . . ; - 2 . 001 ; . . . → - 2

на рисунке обозначена синим цветом.

И эта последовательность сводится к - 2 , тогда lim x → 2 + 0 1 6 (x - 8) 2 - 8 = - 2 .

Действиями выше было показано, что пределы справа и слева являются равными, а значит существует предел функции f (x) = 1 6 x - 8 2 - 8 в точке х 0 = 2 , при этом lim x → 2 1 6 (x - 8) 2 - 8 = - 2 .

После вычисления значения функции в заданной точке очевидно выполнение равенства:

lim x → 2 - 0 f (x) = lim x → 2 + 0 f (x) = f (2) = 1 6 (2 - 8) 2 - 8 = - 2 что свидетельствует о непрерывности заданной функции в заданной точке.

Покажем графически:

Ответ: Непрерывность функции f (x) = 1 6 (x - 8) 2 - 8 в заданной части доказано.

Устранимый разрыв первого рода

Определение 2

Функция имеет устранимый разрыв первого рода в точке х 0 , когда пределы справа и слева равны, но не равны значению функции в точке, т.е.:

lim x → x 0 - 0 f (x) = lim x → x 0 + 0 f (x) ≠ f (x 0)

Пример 2

Задана функция f (x) = x 2 - 25 x - 5 . Необходимо определить точки ее разрыва и определить их тип.

Решение

Сначала обозначим область определения функции: D (f (x)) ⇔ D x 2 - 25 x - 5 ⇔ x - 5 ≠ 0 ⇔ x ∈ (- ∞ ; 5) ∪ (5 ; + ∞)

В заданной функции точкой разрыва может служить только граничная точка области определения, т.е. х 0 = 5 . Исследуем функцию на непрерывность в этой точке.

Выражение x 2 - 25 x - 5 упростим: x 2 - 25 x - 5 = (x - 5) (x + 5) x - 5 = x + 5 .

Определим пределы справа и слева. Поскольку функция g (x) = x + 5 является непрерывной при любом действительном x , тогда:

lim x → 5 - 0 (x + 5) = 5 + 5 = 10 lim x → 5 + 0 (x + 5) = 5 + 5 = 10

Ответ: пределы справа и слева являются равными, а заданная функция в точке х 0 = 5 не определена, т.е. в этой точке функция имеет устранимый разрыв первого рода.

Неустранимый разрыв первого рода также определяется точкой скачка функции.

Определение 3 Пример 3

Задана кусочно-непрерывная функция f (x) = x + 4 , x < - 1 , x 2 + 2 , - 1 ≤ x < 1 2 x , x ≥ 1 . Необходимо изучить заданную функцию на предмет непрерывности, обозначить вид точек разрыва, составить чертеж.

Решение

Разрывы данной функции могут быть лишь в точке х 0 = - 1 или в точке х 0 = 1 .

Определим пределы справа и слева от этих точек и значение заданной функции в этих точках:

  • слева от точки х 0 = - 1 заданная функция есть f (x) = x + 4 , тогда в силу непрерывности линейной функции: lim x → - 1 - 0 f (x) = lim x → - 1 - 0 (x + 4) = - 1 + 4 = 3 ;
  • непосредственно в точке х 0 = - 1 функция принимает вид: f (x) = x 2 + 2 , тогда: f (- 1) = (- 1) 2 + 2 = 3 ;
  • на промежутке (- 1 ; 1) заданная функция есть: f (x) = x 2 + 2 . Опираясь на свойство непрерывности квадратичной функции, имеем: lim x → - 1 + 0 f (x) = lim x → - 1 + 0 (x 2 + 2) = (- 1) 2 + 2 = 3 lim x → 1 - 0 f (x) = lim x → 1 - 0 (x 2 + 2) = (1) 2 + 2 = 3
  • в точке х 0 = - 1 функция имеет вид: f (x) = 2 x и f (1) = 2 · 1 = 2 .
  • справа от точки х 0 заданная функция есть f (x) = 2 x . В силу непрерывности линейной функции: lim x → 1 + 0 f (x) = lim x → 1 + 0 (2 x) = 2 · 1 = 2

Ответ: в конечном счете мы получили:

  • lim x → - 1 - 0 f (x) = lim x → - 1 + 0 f (x) = f (- 1) = 3 - это означает, что в точке х 0 = - 1 заданная кусочная функция непрерывна;
  • lim x → - 1 - 0 f (x) = 3 , lim x → 1 + 0 f (x) = 2 - таким образом, в точке х 0 = 1 определён неустранимый разрыв первого рода (скачок).

Нам остается только подготовить чертеж данного задания.

Определение 4

Функция имеет разрыв второго рода в точке х 0 , когда какой-либо из пределов слева lim x → x 0 - 0 f (x) или справа lim x → x 0 + 0 f (x) не существует или бесконечен.

Пример 4

Задана функция f (x) = 1 x . Необходимо исследовать заданную функцию на непрерывность, определить вид точек разрыва, подготовить чертеж.

Решение

Запишем область определения функции: x ∈ (- ∞ ; 0) ∪ (0 ; + ∞) .

Найдем пределы справа и слева от точки х 0 = 0 .

Зададим произвольную последовательность значений аргумента, сходящуюся к х 0 слева. К примеру:

8 ; - 4 ; - 2 ; - 1 ; - 1 2 ; - 1 4 ; . . . ; - 1 1024 ; . . .

Ей соответствует последовательность значений функции:

f (- 8) ; f (- 4) ; f (- 2) ; f (- 1) ; f - 1 2 ; f - 1 4 ; . . . ; f - 1 1024 ; . . . = = - 1 8 ; - 1 4 ; - 1 2 ; - 1 ; - 2 ; - 4 ; . . . ; - 1024 ; . . .

Очевидно, что эта последовательность является бесконечно большой отрицательной, тогда lim x → 0 - 0 f (x) = lim x → 0 - 0 1 x = - ∞ .

Тепереь зададим произвольную последовательность значений аргумента, сходящуюся к х 0 справа. К примеру: 8 ; 4 ; 2 ; 1 ; 1 2 ; 1 4 ; . . . ; 1 1024 ; . . . , и ей соответствует последовательность значений функции:

f (8) ; f (4) ; f (2) ; f (1) ; f 1 2 ; f 1 4 ; . . . ; f 1 1024 ; . . . = = 1 8 ; 1 4 ; 1 2 ; 1 ; 2 ; 4 ; . . . ; 1024 ; . . .

Эта последовательность - бесконечно большая положительная, а значит lim x → 0 + 0 f (x) = lim x → 0 + 0 1 x = + ∞ .

Ответ : точка х 0 = 0 - точка разрыва функции второго рода.

Проиллюстрируем:

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Непрерывная функция представляет собой функцию без «скачков», то есть такую, для которой выполняется условие: малым изменениям аргумента следуют малые изменения соответствующих значений функции. График подобной функции представляет из себя плавную или непрерывную кривую.

Непрерывность в точке, предельной для некоторого множества, можно определить с помощью понятия предела, а именно: функция должна иметь в этой точке предел, который равен ее значению в предельной точке.

При нарушении этих условий в некоторой точке, говорят, что функция в данной точке терпит разрыв, то есть ее непрерывность нарушается. На языке пределов точку разрыва можно описать как несовпадение значения функции в разрывной точке с пределом функции (если он существует).

Точка разрыва может быть устранимой, для этого необходимо существование предела функции, но несовпадающего с его значением в заданной точке. В этом случае ее в этой точке можно «поправить», то есть доопределить до непрерывности.
Совсем иная картина складывается, если предела функции в заданной существует. Возможно два варианта точек разрыва:

  • первого рода - имеются и конечны оба из односторонних пределов, и значение одного из них или обоих не совпадают со значением функции в заданной точке;
  • второго рода, когда не существует один или оба из односторонних пределов или их значения бесконечны.

Свойства непрерывных функций

  • Функция, полученная в результат арифметических действий, а также суперпозиции непрерывных функций на их области определения также является непрерывной.
  • Если дана непрерывная функция, которая положительна в некоторой точке, то всегда можно найти достаточно малую ее окрестность, на которой она сохранит свой знак.
  • Аналогично, если ее значения в двух точках A и B равны, соответственно, a и b, причем a отлично от b, то для промежуточных точек она примет все значения из промежутка (a ; b). Отсюда можно сделать интересное заключение: если дать растянутой резинке сжаться так, чтобы она не провисала (оставалась прямолинейной), то одна из ее точек останется неподвижной. А геометрически это означает, что существует прямая, проходящая через любую промежуточную точку между A и B, которая пересекает график функции.

Отметим некоторые из непрерывных (на области их определения) элементарных функций:

  • постоянная;
  • рациональная;
  • тригонометрические.

Между двумя фундаментальными понятиями в математике - непрерывностью и дифференцируемостью - существует неразрывная связь. Достаточно только вспомнить, что для дифференцируемости функции необходимо, чтобы это была непрерывная функция.

Если же функция в некоторой точке дифференцируема, то там она непрерывна. Однако совсем не обязательно, чтобы и ее производная была непрерывной.

Функция, имеющая на некотором множестве непрерывную производную, принадлежит отдельному классу гладких функций. Иначе говоря, это - непрерывно дифференцируемая функция. Если же производная имеет ограниченное количество точек разрыва (только первого рода), то подобную функцию называют кусочно гладкой.

Еще одним важным понятием является равномерная непрерывность функции, то есть ее способность быть в любой точке своей области определения одинаково непрерывной. Таким образом, это свойство, которое рассматривается на множестве точек, а не в какой-либо отдельно взятой.

Если же зафиксировать точку, то получится не что иное, как определение непрерывности, то есть из наличия равномерной непрерывности вытекает, что перед нами непрерывная функция. Вообще говоря, обратное утверждение неверно. Однако согласно теореме Кантора, если функция непрерывна на компакте, то есть на замкнутом промежутке, то она на нем равномерно непрерывна.

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Непрерывность функций одной переменной»

студентами бухгалтерского факультета заочной формы получения

образования (НИСПО)

Горки, 2013

Непрерывность функций одной переменной

    Односторонние пределы

Пусть функция
определена на множестве
. Введём понятие односторонних пределов функции при
. Будем рассматривать такие значения х , что
. Это означает, что
, оставаясь всё время слева от
при
то он называется левым пределом этой функции в точке (или при
) и обозначается

.

Пусть теперь
, оставаясь всё время справа от , т.е. оставаясь больше . Если при этом существует предел функции
, то он называется правым пределом этой функции в точке и обозначается

.

Левый и правый пределы называются односторонними пределами функции в точке.

Если существуют односторонние пределы функции в точке и они равны между собой, то функция имеет тот же предел в этой точке :



.

Если односторонние пределы функции в точке существуют, но не равны между собой, то предел функции в этой точке не существует .

    Непрерывность функции в точке

Пусть функция
определена на некотором множестве D . Пусть независимая переменная х переходит от одного своего (начального) значения
к другому (конечному) значению . Разность конечного и начального значений называется приращением величины х и обозначается
. Приращение может быть как положительным, так и отрицательным. В первом случае величина х при переходе от к х увеличивается, а во втором случае - уменьшается.

Если независимая переменная х получает некоторое приращение
, то функция
получает приращение
. Так как
, то .

Приращением функции
в точке называется разность , где
– приращение независимой переменной.

Можно дать несколько определений непрерывности функции в точке.



Функция называется непрерывной в интервале , если она непрерывна в каждой точке этого интервала. Геометрически непрерывность функции
в замкнутом интервале означает, что график функции представляет собой сплошную линию без разрывов.

Непрерывные на отрезке функции обладают важными свойствами, которые выражаются следующими утверждениями.

Если функция
непрерывна на отрезке [a , b ], то она ограничена на этом отрезке.

Если функция
непрерывна на отрезке [a , b ], то она достигает на этом отрезке своего наименьшего и наибольшего значений.

Если функция
непрерывна на отрезке [a , b ] и
, то каким бы ни было число С , заключённое между числами А и В , найдётся точка
, что
.

Из этого утверждения следует, что если функция
непрерывна на [a , b ] и на концах этого отрезка принимает значения разных знаков, то на этом отрезке существует хотя бы одна точка c , в которой функция обращается в нуль.

Справедливо следующее утверждение: если над непрерывными функциями производить арифметические действия, то в результате получается непрерывная функци я.

Пример 1 .

в точке
.

Решение . Значение функции при
есть
. Вычислим односторонние пределы функции в точке
:

Так как односторонние пределы при
равны между собой и равны значению функции в этой точке, то данная функция непрерывна в точке
.

3. Непрерывность элементарных функций

Рассмотрим функцию
. Эта постоянная функция непрерывна в любой точке , так как
.

Функция
также непрерывна в каждой точке
, так как
. Так как
, то на основании приведённого утверждения об арифметических операциях над непрерывными функциями
будет непрерывной. Непрерывными будут такжен функции
.

Аналогично можно показать непрерывность остальных элементарных функций.

Таким образом, любая элементарная функция непрерывна в своей области определения, т.е. область определения элементарной функции совпадает с областью её непрерывности.

    Непрерывность сложной и обратной функций

Пусть функция
непрерывна в точке , а функция
непрерывна в точке
. Тогда сложная функция
непрерывна в точке . Это означает, что если сложная функция составлена из непрерывных функций, то она также будет непрерывной, т.е. непрерывная функция от непрерывной функции есть функция непрерывная . Это определение распространяется на конечное число непрерывных функций.

Из этого определения следует, что под знаком непрерывной функции можно переходить к пределу:

Это означает, что если функция непрерывна, то знак предела и знак функции можно поменять местами.

Пусть функция
a , b ]. Тогда обратная ей функция
определена, строго монотонна и непрерывна на отрезке [A , B ], где
.

    Точки разрыва и их классификаци я

Как уже известно, что если функция
определена на множестве D и в точке
выполняется условие
, то функция непрерывна в этой точке. Если же это условие непрерывности не выполняется, то в точке х 0 функция имеет разрыв.

Точка называется точкой разрыва первого рода функции
, если в этой точке функция имеет конечные односторонние пределы, не равные друг другу, т.е. . При этом величина

называется скачком функции
в точке .

Точка называется точкой устранимого разрыва функции
, если односторонние пределы функции в этой точке равны друг другу и не равны значению функции в этой точке, т.е. В этом случае для устранения разрыва в точке нужно положить

Точка х 0 называется точкой разрыва второго рода функции
если хотя бы один из односторонних пределов
или
в этой точке либо не существует, либо равен бесконечности.

Пример 2 . Исследовать на непрерывность функцию

.

Решение . Функция определена и непрерывна на всей числовой прямой, за исключением точки
. В этой точке функция имеет разрыв. Найдём односторонние пределы функции в точке
:

Так как в точке
односторонние пределы равны между собой, а функция в этой точке не определена, то точка
является точкой устранимого разрыва. Чтобы устранить разрыв в этой точке, необходимо доопределить функцию, положив
.

Пример 3 . Исследовать на непрерывность функцию

.

Решение . Функция определена и непрерывна на всём множестве действительных чисел, кроме
. В этой точке функция имеет разрыв. Найдём односторонние пределы функции при
:

.

Так как данная функция в точке
имеет конечные односторонние пределы, не равные друг другу, то эта точка является точкой разрыва первого рода. Скачок функции в точке
равен .

Вопросы для самоконтроля знаний

    Что называется приращением аргумента и приращением функции?

    Что называется левосторонним (левым) пределом функции?

    Что называется правосторонним (правым) пределом функции?

    Какая функция называется непрерывной в точке, в интервале?

    Какая точка называется точкой разрыва функции?

    Какая точка называется точкой разрыва первого рода?

    Какая точка называется точкой разрыва второго рода?

    Какая точка называется точкой устранимого разрыва?

Задания для самостоятельной работы

Исследовать функции на непрерывность:


в точке
.