Найти обратную матрицу с помощью присоединенной матрицы. Матричный метод решения слау: пример решения с помощью обратной матрицы

Рассмотрим квадратную матрицу . Обозначим Δ = det A ее определитель. Квадратная В есть (ОМ) для квадратной А того же порядка, если их произведение А*В = В* А = Е, где Е - единичная матрица того же порядка, что и А и В.

Квадратная А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0.

Теорема. Для того, чтобы А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

(ОМ) А, обозначается через А -1 , так что В = А -1 и вычисляется по формуле

, (1)

где А i j - алгебраические дополнения элементов a i j , Δ = detA.

Вычисление A -1 по формуле (1) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить A -1 с помощью метода элементарных преобразований (ЭП). Любую неособенную А путем ЭП только столбцов (или только строк) можно привести к единичной Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной Е, то в результате получится A -1 . Удобно совершать ЭП над А и Е одновременно, записывая обе рядом через черту A|E. Если нужно найти A -1 , в процессе преобразований следует использовать только строки или только столбцы.

Нахождение обратной матрицы с помощью алгебраических дополнений

Пример 1 . Для найти A -1 .

Решение. Находим сначала детерминант А
значит, (ОМ) существует и мы ее можем найти по формуле: , где А i j (i,j=1,2,3) - алгебраические дополнения элементов а i j исходной А.

Алгебраическое дополнение элемента a ij это определитель или минор M ij . Он получается вычеркиванием столбца i и строки j. Затем минор умножается на (-1) i+j , т.е. A ij =(-1) i+j M ij

откуда .

Нахождение обратной матрицы с помощью элементарных преобразований

Пример 2 . Методом элементарных преобразований найти A -1 для: А= .

Решение. Приписываем к исходной A справа единичную того же порядка: . С помощью элементарных преобразований столбцов приведем левую “половину” к единичной, совершая одновременно точно такие преобразования над правой "половиной".
Для этого поменяем местами первый и второй столбцы: ~. К третьему столбцу прибавим первый, а ко второму - первый, умноженный на -2: . Из первого столбца вычтем удвоенный второй, а из третьего - умноженный на 6 второй; . Прибавим третий столбец к первому и второму: . Умножим последний столбец на -1: . Полученная справа от вертикальной черты квадратная таблица является обратной А -1 . Итак,
.


В этой статье разберемся с понятием обратной матрицы, ее свойствами и способами нахождения. Подробно остановимся на решении примеров, в которых требуется построить обратную матрицу для заданной.

Навигация по странице.

Обратная матрица - определение.

Понятие обратной матрицы вводится лишь для квадратных матриц, определитель которых отличен от нуля, то есть для невырожденных квадратных матриц.

Определение.

Матрица называется обратной для матрицы , определитель которой отличен от нуля , если справедливы равенства , где E – единичная матрица порядка n на n .

Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.

Как же находить обратную матрицу для данной?

Во-первых, нам потребуются понятия транспонированной матрицы , минора матрицы и алгебраического дополнения элемента матрицы.

Определение.

Минор k-ого порядка матрицы A порядка m на n – это определитель матрицы порядка k на k , которая получается из элементов матрицы А , находящихся в выбранных k строках и k столбцах. (k не превосходит наименьшего из чисел m или n ).

Минор (n-1)-ого порядка, который составляется из элементов всех строк, кроме i-ой , и всех столбцов, кроме j-ого , квадратной матрицы А порядка n на n обозначим как .

Иными словами, минор получается из квадратной матрицы А порядка n на n вычеркиванием элементов i-ой строки и j-ого столбца.

Для примера запишем, минор 2-ого порядка, который получаетсся из матрицы выбором элементов ее второй, третьей строк и первого, третьего столбцов . Также покажем минор, который получается из матрицы вычеркиванием второй строки и третьего столбца . Проиллюстрируем построение этих миноров: и .

Определение.

Алгебраическим дополнением элемента квадратной матрицы называют минор (n-1)-ого порядка, который получается из матрицы А , вычеркиванием элементов ее i-ой строки и j-ого столбца, умноженный на .

Алгебраическое дополнение элемента обозначается как . Таким обрзом, .

Например, для матрицы алгебраическое дополнение элемента есть .

Во-вторых, нам пригодятся два свойства определителя, которые мы разобрали в разделе вычисление определителя матрицы :

На основании этих свойств определителя, определения операции умножения матрицы на число и понятия обратной матрицы справедливо равенство , где - транспонированная матрица, элементами которой являются алгебраические дополнения .

Матрица действительно является обратной для матрицы А , так как выполняются равенства . Покажем это



Составим алгоритм нахождения обратной матрицы с использованием равенства .

Разберем алгоритм нахождения обратной матрицы на примере.

Пример.

Дана матрица . Найдите обратную матрицу.

Решение.

Вычислим определитель матрицы А , разложив его по элементам третьего столбца:

Определитель отличен от нуля, так что матрица А обратима.

Найдем матрицу из алгебраических дополнений:

Поэтому

Выполним транспонирование матрицы из алгебраических дополнений:

Теперь находим обратную матрицу как :

Проверяем полученный результат:



Равенства выполняются, следовательно, обратная матрица найдена верно.

Свойства обратной матрицы.

Понятие обратной матрицы, равенство , определения операций над матрицами и свойства определителя матрицы позволяют обосновать следующие свойства обратной матрицы :

Нахождение обратной матрицы методом Гаусса-Жордана.

Существуют альтернативные методы нахождения обратной матрицы, например, метод Гаусса - Жордана.

Суть метода Гаусса-Жордана заключается в том, что если с единичной матрицей Е провести элементарные преобразованиия, которыми невырожденная квадратная матрица А приводится к Е , то получится обратная матрица .

Опишем алгоритм приведения матрицы А порядка n на n , определитель которой не равен нулю, к единичной матрице методом Гаусса - Жордана. После описания алгоритма разберем пример, чтобы все стало понятно.

Сначала преобразуем матрицу так, чтобы элемент стал равен единице, а все остальные элементы первого столбца стали нулевыми.

Если , то на место первой строки ставится k-ая строка (k>1 ), в которой , а на место k-ой строки ставится первая. (Строка с обязательно существует, в противном случае матрица А – вырожденная). После перестановки строк получили «новую» матрицу А , у которой .

Теперь умножаем каждый элемент первой строки на . Так приходим к «новой» матрице А , у которой . Далее к элементам второй строки прибавляем соответствующие элементы первой строки, умноженные на . К элементам третьей строки – соответствующие элементы первой строки, умноженные на . И продолжаем такой процесс до n-ой строки включительно. Так все элементы первого столбца матрицы А , начиная со второго, станут нулевыми.

С первым столбцом разобрались, переходим ко второму.

Преобразуем матрицу А так, чтобы элемент стал равен единице, а все остальные элементы второго столбца, начиная с , стали нулевыми.

Если , то на место второй строки ставится k-ая строка (k>2 ), в которой , а на место k-ой строки ставится вторая. Так получаем преобразованную матрицу А , у которой . Умножаем все элементы второй строки на . После этого к элементам третьей строки прибавляем соответствующие элементы второй строки, умноженные на . К элементам четвертой строки – соответствующие элементы второй строки, умноженные на . И продолжаем такой процесс до n-ой строки включительно. Так все элементы второго столбца матрицы А , начиная с третьего, станут нулевыми, а будет равен единице.

Со вторым столбцом закончили, переходим к третьему и проводим аналогичные преобразования.

Так продолжаем процесс, пока все элементы главной диагонали матрицы А не станут равными единице, а все элементы ниже главной диагонали не станут равными нулю.

С этого момента начинаем обратный ход метода Гаусса-Жордана. Теперь преобразуем матрицу А так, чтобы все элементы n-ого столбца, кроме , стали нулевыми. Для этого к элементам (n-1)-ой строки прибавляем соответствующие элементы n-ой строки, умноженные на . К элементам (n-2)-ой строки – соответствующие элементы n-ой строки, умноженные на . И продолжаем такой процесс до первой строки включительно. Так все элементы n-ого столбца матрицы А (кроме ), станут нулевыми.

С последним столбцом разобрались, переходим к (n-1)-ому .

Преобразуем матрицу А так, чтобы все элементы (n-1)-ого столбца до , стали нулевыми. Для этого к элементам (n-2)-ой строки прибавляем соответствующие элементы (n-1)-ой строки, умноженные на . К элементам (n-3)-ой строки – соответствующие элементы (n-1)-ой строки, умноженные на . И продолжаем такой процесс до первой строки включительно. Так все элементы (n-1)-ого столбца матрицы А (кроме ), станут нулевыми.

Пример.

Приведите матрицу к единичной с помощью преобразований Гаусса – Жордана.

Решение.

Так как , а , то переставим местами первую и вторую строки матрицы, получим матрицу .

Умножим все элементы первой строки матрицы на : .

К элементам второй строки прибавляем соответствующие элементы первой строки, умноженные на 0 , а к элементам третьей строки прибавляем соответствующие элементы первой строки, умноженные на (-4) :

Переходим ко второму столбцу.

Элемент полученной матрицы уже равен единице, поэтому нет необходимости производить умножение элементов второй строки на . К элементам третьей строки прибавляем соответствующие элементы второй строки, умноженные на :

Переходим к третьему столбцу.

Умножим элементы третьей строки на : .

Единицы на главной диагонали матрицы получены, так что приступаем к обратному ходу.

К элементам второй строки прибавляем соответствующие элементы третьей строки, умноженные на (-2) , а к элементам первой строки прибавляем соответствующие элементы третьей строки, умноженные на :

В последнем столбце необходимые нулевые элементы получены, переходим к предпоследнему (ко второму) столбцу.

К элементам первой строки прибавим соответствующие элементы второй строки, умноженные на :
.

Так проведены все преобразования матрицы и получена единичная матрица.

Пришло время применить метод Гаусса – Жордана к нахождению обратной матрицы.

Пример.

Найдите обратную матрицу для методом Гаусса – Жордана.

Решение.

В левой части страницы будем проводить преобразования Гаусса – Жордана с матрицей А , а в правой части страницы будем проделывать те же преобразования с единичной матрицей.

Так как , а , то переставим первую и вторую строки местами:

Умножим элементы первой строки матрицы на одну вторую, чтобы элемент стал равен единице:

К элементам второй строки прибавим соответствующие элементы первой строки, умноженные на 0 , к элементам третьей строки прибавим соответствующие элементы первой строки, умноженные на 2 , к элементам четвертой строки – элементы первой строки, умноженные на 5 :

Так в первом столбце матрицы А мы получили нужные нулевые элементы. Переходим ко второму столбцу. Добьемся того, чтобы элемент стал равен единице. Для этого умножим элементы второй строки матрицы на , не забываем выполнять такие же преобразования с матрицей в правой части:

Дальше нам нужно сделать элементы и нулевыми, для этого к элементам третьей строки прибавляем соответствующие элементы второй строки, умноженные на 0 , а к элементам четвертой строки прибавляем соответствующие элементы второй строки, умноженные на :

Так второй столбец матрицы А преобразован к нужному виду. Переходим к третьему столбцу. Так как элемент нулевой, то меняем местами третью и четвертую строки:

Умножаем элементы третьей строки на :

Третий столбец матрицы А принял нужный вид (элемент нулевой, поэтому не пришлось к элементам четвертой строки прибавлять соответствующие элементы третьей строки, умноженные на ). Осталось умножить четвертую строку на чтобы все элементы главной диагонали стали равны единице:

Прямой ход метода Гаусса-Жордана завершен, приступаем к обратному ходу. Получаем необходимые нулевые элементы в последнем столбце матрицы А . Для этого к элементам третьей строки прибавляем соответствующие элементы последней строки, умноженные на , к элементам второй строки – элементы последней строки, умноженные на , к элементам первой строки – элементы последней строки, умноженные на 0 :

Получаем нули в предпоследнем столбце прибавлением к элементам второй и первой строк соответствующие элементы третьей строки, умноженные на и 0 соответственно:

Осталось последнее преобразование. К элементам первой строки прибавляем элементы второй строки, умноженные на :

Итак, матрица А преобразованиями Гаусса – Жордана приведена к единичной матрице, а единичная матрица с помощью таких же преобразований приведена к обратной матрице. Таким образом, в правой части получена обратная матрица. Можете провести проверку, выполнив умножение матрицы А на обратную матрицу.

Ответ:

.

Нахождение элементов обратной матрицы с помощью решения соответствующих систем линейных алгебраических уравнений.

Рассмотрим еще один способ нахождения обратной матрицы для квадратной матрицы А порядка n на n .

Этот метод основан на решении n систем линейных неоднородных алгебраических уравнений с n дает нам три системы линейных неоднородных алгебраических уравнений:

Не будем расписывать решение этих систем, при необходимости обращайтесь к разделу .

Из первой системы уравнений имеем , из второй - , из третьей - . Следовательно, искомая обратная матрица имеет вид . Рекомендуем сделать проверку, чтобы убедиться в правильности результата.

Подведем итог.

Мы рассмотрели понятие обратной матрицы, ее свойства и три метода ее нахождения.

Похожие на обратные по многим свойствам.

Энциклопедичный YouTube

    1 / 5

    ✪ Обратная матрица (2 способа нахождения)

    ✪ Как находить обратную матрицу - bezbotvy

    ✪ Обратная матрица #1

    ✪ Решение системы уравнений методом обратной матрицы - bezbotvy

    ✪ Обратная Матрица

    Субтитры

Свойства обратной матрицы

  • det A − 1 = 1 det A {\displaystyle \det A^{-1}={\frac {1}{\det A}}} , где det {\displaystyle \ \det } обозначает определитель .
  • (A B) − 1 = B − 1 A − 1 {\displaystyle \ (AB)^{-1}=B^{-1}A^{-1}} для двух квадратных обратимых матриц A {\displaystyle A} и B {\displaystyle B} .
  • (A T) − 1 = (A − 1) T {\displaystyle \ (A^{T})^{-1}=(A^{-1})^{T}} , где (. . .) T {\displaystyle (...)^{T}} обозначает транспонированную матрицу.
  • (k A) − 1 = k − 1 A − 1 {\displaystyle \ (kA)^{-1}=k^{-1}A^{-1}} для любого коэффициента k ≠ 0 {\displaystyle k\not =0} .
  • E − 1 = E {\displaystyle \ E^{-1}=E} .
  • Если необходимо решить систему линейных уравнений , (b - ненулевой вектор) где x {\displaystyle x} - искомый вектор, и если A − 1 {\displaystyle A^{-1}} существует, то x = A − 1 b {\displaystyle x=A^{-1}b} . В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

Способы нахождения обратной матрицы

Если матрица обратима, то для нахождения обратной матрицы можно воспользоваться одним из следующих способов:

Точные (прямые) методы

Метод Гаусса-Жордана

Возьмём две матрицы: саму A и единичную E . Приведём матрицу A к единичной матрице методом Гаусса-Жордана применяя преобразования по строкам (можно также применять преобразования и по столбцам, но не в перемешку). После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A −1 .

При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц Λ i {\displaystyle \Lambda _{i}} (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):

Λ 1 ⋅ ⋯ ⋅ Λ n ⋅ A = Λ A = E ⇒ Λ = A − 1 {\displaystyle \Lambda _{1}\cdot \dots \cdot \Lambda _{n}\cdot A=\Lambda A=E\Rightarrow \Lambda =A^{-1}} . Λ m = [ 1 … 0 − a 1 m / a m m 0 … 0 … 0 … 1 − a m − 1 m / a m m 0 … 0 0 … 0 1 / a m m 0 … 0 0 … 0 − a m + 1 m / a m m 1 … 0 … 0 … 0 − a n m / a m m 0 … 1 ] {\displaystyle \Lambda _{m}={\begin{bmatrix}1&\dots &0&-a_{1m}/a_{mm}&0&\dots &0\\&&&\dots &&&\\0&\dots &1&-a_{m-1m}/a_{mm}&0&\dots &0\\0&\dots &0&1/a_{mm}&0&\dots &0\\0&\dots &0&-a_{m+1m}/a_{mm}&1&\dots &0\\&&&\dots &&&\\0&\dots &0&-a_{nm}/a_{mm}&0&\dots &1\end{bmatrix}}} .

Вторая матрица после применения всех операций станет равна Λ {\displaystyle \Lambda } , то есть будет искомой. Сложность алгоритма - O (n 3) {\displaystyle O(n^{3})} .

С помощью матрицы алгебраических дополнений

Матрица, обратная матрице A {\displaystyle A} , представима в виде

A − 1 = adj (A) det (A) {\displaystyle {A}^{-1}={{{\mbox{adj}}(A)} \over {\det(A)}}}

где adj (A) {\displaystyle {\mbox{adj}}(A)} - присоединенная матрица ;

Сложность алгоритма зависит от сложности алгоритма расчета определителя O det и равна O(n²)·O det .

Использование LU/LUP-разложения

Матричное уравнение A X = I n {\displaystyle AX=I_{n}} для обратной матрицы X {\displaystyle X} можно рассматривать как совокупность n {\displaystyle n} систем вида A x = b {\displaystyle Ax=b} . Обозначим i {\displaystyle i} -ый столбец матрицы X {\displaystyle X} через X i {\displaystyle X_{i}} ; тогда A X i = e i {\displaystyle AX_{i}=e_{i}} , i = 1 , … , n {\displaystyle i=1,\ldots ,n} ,поскольку i {\displaystyle i} -м столбцом матрицы I n {\displaystyle I_{n}} является единичный вектор e i {\displaystyle e_{i}} . другими словами, нахождение обратной матрицы сводится к решению n уравнений с одной матрицей и разными правыми частями. После выполнения LUP-разложения (время O(n³)) на решение каждого из n уравнений нужно время O(n²), так что и эта часть работы требует времени O(n³) .

Если матрица A невырождена, то для неё можно рассчитать LUP-разложение P A = L U {\displaystyle PA=LU} . Пусть P A = B {\displaystyle PA=B} , B − 1 = D {\displaystyle B^{-1}=D} . Тогда из свойств обратной матрицы можно записать: D = U − 1 L − 1 {\displaystyle D=U^{-1}L^{-1}} . Если умножить это равенство на U и L то можно получить два равенства вида U D = L − 1 {\displaystyle UD=L^{-1}} и D L = U − 1 {\displaystyle DL=U^{-1}} . Первое из этих равенств представляет собой систему из n² линейных уравнений для n (n + 1) 2 {\displaystyle {\frac {n(n+1)}{2}}} из которых известны правые части (из свойств треугольных матриц). Второе представляет также систему из n² линейных уравнений для n (n − 1) 2 {\displaystyle {\frac {n(n-1)}{2}}} из которых известны правые части (также из свойств треугольных матриц). Вместе они представляют собой систему из n² равенств. С помощью этих равенств можно реккурентно определить все n² элементов матрицы D. Тогда из равенства (PA) −1 = A −1 P −1 = B −1 = D. получаем равенство A − 1 = D P {\displaystyle A^{-1}=DP} .

В случае использования LU-разложения не требуется перестановки столбцов матрицы D но решение может разойтись даже если матрица A невырождена.

Сложность алгоритма - O(n³).

Итерационные методы

Методы Шульца

{ Ψ k = E − A U k , U k + 1 = U k ∑ i = 0 n Ψ k i {\displaystyle {\begin{cases}\Psi _{k}=E-AU_{k},\\U_{k+1}=U_{k}\sum _{i=0}^{n}\Psi _{k}^{i}\end{cases}}}

Оценка погрешности

Выбор начального приближения

Проблема выбора начального приближения в рассматриваемых здесь процессах итерационного обращения матриц не позволяет относиться к ним как к самостоятельным универсальным методам, конкурирующими с прямыми методами обращения, основанными, например, на LU-разложении матриц. Имеются некоторые рекомендации по выбору U 0 {\displaystyle U_{0}} , обеспечивающие выполнение условия ρ (Ψ 0) < 1 {\displaystyle \rho (\Psi _{0})<1} (спектральный радиус матрицы меньше единицы), являющегося необходимым и достаточным для сходимости процесса. Однако при этом, во-первых, требуется знать сверху оценку спектра обращаемой матрицы A либо матрицы A A T {\displaystyle AA^{T}} (а именно, если A - симметричная положительно определённая матрица и ρ (A) ≤ β {\displaystyle \rho (A)\leq \beta } , то можно взять U 0 = α E {\displaystyle U_{0}={\alpha }E} , где ; если же A - произвольная невырожденная матрица и ρ (A A T) ≤ β {\displaystyle \rho (AA^{T})\leq \beta } , то полагают U 0 = α A T {\displaystyle U_{0}={\alpha }A^{T}} , где также α ∈ (0 , 2 β) {\displaystyle \alpha \in \left(0,{\frac {2}{\beta }}\right)} ; можно конечно упростить ситуацию и, воспользовавшись тем, что ρ (A A T) ≤ k A A T k {\displaystyle \rho (AA^{T})\leq {\mathcal {k}}AA^{T}{\mathcal {k}}} , положить U 0 = A T ‖ A A T ‖ {\displaystyle U_{0}={\frac {A^{T}}{\|AA^{T}\|}}} ). Во-вторых, при таком задании начальной матрицы нет гарантии, что ‖ Ψ 0 ‖ {\displaystyle \|\Psi _{0}\|} будет малой (возможно, даже окажется ‖ Ψ 0 ‖ > 1 {\displaystyle \|\Psi _{0}\|>1} ), и высокий порядок скорости сходимости обнаружится далеко не сразу.

Примеры

Матрица 2х2

Невозможно разобрать выражение (синтаксическая ошибка): {\displaystyle \mathbf{A}^{-1} = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \begin& \!\!-b \\ -c & \,a \\ \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} \,\,\,d & \!\!-b\\ -c & \,a \\ \end{bmatrix}.}

Обращение матрицы 2х2 возможно только при условии, что a d − b c = det A ≠ 0 {\displaystyle ad-bc=\det A\neq 0} .

www.сайт позволяет найти обратную матрицу онлайн . Сайт производит вычисление обратной матрицы онлайн . За неколько секунд сервер выдаст точное решение. Обратной матрицей будет являться такая матрица , умножение исходной матрицы на которую дает единичную матрицу , при условии, что определитель начальной матрицы не равен нулю, иначе обратной матрицы для нее не существует. В задачах, когда вычисляем обратную матрицу онлайн , необходимо, чтобы определитель матрицы был отличным от нуля, иначе www.сайт выдаст соответствующее сообщение о невозможности вычислить обратную матрицу онлайн . Такую матрицу еще называют вырожденной. Найти обратную матрицу в режиме онлайн можно только для квадратной матрицы . Операция нахождения обратной матрицы онлайн сводится к вычислению определителя матрицы , затем составляется промежуточная матрица по известному правилу, и в завершении операции - умножения найденного ранее определителя на транспонированную промежуточную матрицу . Точного результата от определения обратной матрицы онлайн можно добиться, изучив теорию по этому курсу. Данная операция занимает особое место в теории матриц и линейной алгебры, позволяет решать системы линейных уравнений, так называемым, матричным методом. Задача по нахождению обратной матрицы онлайн встречается уже в начале изучения высшей математики и присутствует почти в каждой математической дисциплине как базовое понятие алгебры, являясь математическим инструментом в прикладных задачах. www.сайт находит обратную матрицу заданной размерности в режиме онлайн мгновенно. Вычисление обратной матрицы онлайн при заданной её размерности - это нахождение матрицы той же размерности в числовом ее значении, а также в символьном, найденного по правилу вычисления обратной матрицы . Нахождение обратной матрицы онлайн широко распространено в теории матриц . Результат нахождения обратной матрицы онлайн используется при решении линейной системы уравнений матричным методом. Если определитель матрицы будет равен нулю, то обратной матрицы , для которой найден нулевой определитель, не существует. Для того, чтобы вычислить обратную матрицу или найти сразу для нескольких матриц соответствующие им обратные , необходимо затратить не мало времени и усилий, в то время как наш сервер в считанные секунды найдет обратную матрицу онлайн . При этом ответ по нахождению обратной матрицы будет правильным и с достаточной точностью, даже если числа при нахождении обратной матрицы онлайн будут иррациональными. На сайте www.сайт допускаются символьные записи в элементах матриц , то есть обратная матрица онлайн может быть представлена в общем символьном виде при вычислении обратной матрицы онлайн . Полезно проверить ответ, полученный при решении задачи по нахождению обратной матрицы онлайн , используя сайт www.сайт . При совершении операции вычисления обратной матрицы онлайн необходимо быть внимательным и предельно сосредоточенным при решении данной задачи. В свою очередь наш сайт поможет Вам проверить своё решение на тему обратная матрица онлайн . Если у Вас нет времени на долгие проверки решенных задач, то www.сайт безусловно будет являться удобным инструментом для проверки при нахождении и вычислении обратной матрицы онлайн .

Исходной по формуле: A^-1 = A*/detA, где A* - присоединенная матрица, detA - исходной матрицы. Присоединенная матрица - это транспонированная матрица дополнений к элементам исходной матрицы.

Первым делом найдите определитель матрицы, он должен быть отличен от нуля, так как дальше определитель будет использоваться в качестве делителя. Пусть для примера дана матрица третьего (состоящая из трех строк и трех столбцов). Как видно, определитель матрицы не равен нулю, поэтому существует обратная матрица.

Найдите дополнения к каждому элементу матрицы A. Дополнением к A называется определитель подматрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца, причем этот определитель берется со знаком. Знак определяется умножением определителя на (-1) в степени i+j. Таким образом, например, дополнением к A будет определитель, рассмотренный на рисунке. Знак получился так: (-1)^(2+1) = -1.

В результате вы получите матрицу дополнений, теперь транспонируйте ее. Транспонирование - это операция, симметричная относительно главной диагонали матрицы, столбцы и строки меняются местами. Таким образом, вы нашли присоединенную матрицу A*.