Матрицы смартфонов сравнение. Какой тип экрана выбрать: IPS или TFT? Дисплей IPS или TFT лучше? Технологии создания экранов

LTPS (низкотемпературная поликремневая) технология - это новейший производственный процесс изготовления TFT ЖКИ. В этой технологии используется лазерный отжиг, который позволяет производить кристаллизацию кремниевой пленки при температуре менее 400°C.

Поликристаллический кремний - материал на основе кремния, который содержит множество кристаллов кремния размером от 0.1 до нескольких микрон. При производстве полупроводников поликристаллический кремний обычно изготавливается при помощи LPCVD (Low Pressure Chemical Vapor Deposition - химическое осаждение при низком давлении из газообразной фазы), а затем отжигается при температуре более 900 C. Это так называемый SPC (Solid Phase Crystallization - кристаллизация твердой фазы) метод. Очевидно, что такой метод не может быть применен при производстве индикаторных панелей, так как температура плавления стекла порядка 650 C. Поэтому LTPS технология - новая технология, предназначенная для производства ЖКИ панелей.

На приведенном ниже рисунке показаны структуры однокристального, аморфного и поликристаллического кремния.

Теперь рассмотрим несколько методов формирования LTPS пленки на стеклянной или пластиковой подложке, которые используются в настоящее время:

1. MIC (Metal Induced Crystallization - кристаллизация, вызываемая металлом): Это разновидность SPC метода, но, по сравнению с обычным SPC методом, он позволяет получить поликристаллический кремний при более низкой температуре (приблизительно 500 - 600 C). Достигается это за счет металлизации пленки перед отжигом. Металл позволяет снизить энергию, необходимую для активизации процесса кристаллизации.

2. Cat-CVD: При этом методе осаждается уже поликристаллическая пленка, которая в дальнейшем не подвергается термической обработке (отжигу). В настоящее время уже имеется возможность выполнять осаждение при температуре ниже 300C. Однако, механизм выращивания при каталитическом взаимодействии приводит к растрескиванию смеси SiH4-H2.

3. Лазерный отжиг: Это - самый популярный метод, используемый в настоящее время. В качестве источника энергии используется эксимерный лазер. Он нагревает и расплавляет a-Si с низким содержанием водорода. После этого кремний повторно кристаллизуется в виде поликристаллической пленки.

Подготовка LTPS пленки очевидно более сложна, чем a-Si пленки, но LTPS TFT имеют в 100 раз большую надежность, чем тонкопленочные транзисторы, изготовленные по a-Si технологии, а кроме того LTPS технология позволяет на стеклянной подложке изготавливать в едином цикле и КМОП интегральные схемы. p-Si технология имеет следующие основные преимущества по сравнению с a-Si технологией:

1. Обеспечивает возможность изготовления на стеклянной подложке в едином технологическом цикле интегральные схемы драйверов, что позволяет уменьшить необходимое количество периферийных устройств и стоимость.

2. Более высокий апертурный коэффициент: более высокая подвижность носителей означает, что можно обеспечить требуемое время заряда пикселя при помощи меньшего тонкопленочного транзистора. Это ведет к тому, что большая площадь элемента может быть задействована под область пропускания света.

3. Носитель для OLED: Более высокая подвижность носителей означает, что тока питания вполне достаточно для управления OLED приборами.

4. Компактность модуля: За счет наличия встроенного драйвера требуется меньшая площадь печатной платы для схемы управления.

Характеристики получаемых таким образом TFT ЖКИ будут рассмотрены ниже, а пока рассмотрим основные аспекты LTPS технологии.

Лазерный отжиг

При лазерном отжиге кристаллизация a-Si пленки происходит уже при температуре менее 400°C. На рисунке показана структура a-Si до лазерного отжига и структура p-Si, полученная уже после лазерного отжига.

Подвижность электронов

Подвижность электронов в тонкопленочных транзисторах (TFT), изготовленных по технологи LTPS достигает ~200 см 2 /В*s, что намного выше, чем у транзисторов a-Si технологии (всего ~0.5 см2/В*s). Повышенная подвижность электронов позволяет увеличить степень интеграции формируемой на подложке ЖКИ интегральной схемы, а так же уменьшить размеры самого тонкопленочного транзистора.

Приведенный ниже рисунок упрощенно показывает к чему приводит повышенная подвижность электронов.

Апертурный коэффициент

Апертурный коэффициент - это отношение полезной площади ячейки к ее полной площади. Так как тонкопленочный транзистор LTPS ЖКИ имеет намного меньший размер, чем транзистор ЖКИ, изготовленного по a-Si технологии, то полезная площадь ячейки, а, следовательно, и апертурный коэффициент, такого ЖКИ будет выше. Как известно, при всех равных параметрах яркость ячейки с большим апертурным коэффициентом будет больше!

На приведенном ниже рисунке можно видеть, что эффективная площадь LTPS TFT больше, чем у тонкопленочного транзистора, изготовленного по a-Si технологии.

Встроенные драйверы

LTPS технология позволяет в едином цикле формировать непосредственно на подложке ЖКИ и интегральные схемы драйверов. Это позволяет существенно снизить количество необходимых внешних контактов и уменьшить размеры самой подложки. Это ведет к тому, что требуемая надежность устройства может быть достигнута при меньших затратах, а следовательно стоимость всего изделия также будет ниже.

На приведенном ниже рисунке упрощенно показаны ЖКИ, изготовленный по a-Si технологии и ЖКИ с интегрированным драйвером, изготовленный по LTPS технологии,. Как видно, количество контактов и площадь подложки у первого намного больше.

Характеристики LTPS технологии:

  • Более высокая реакция электронов
  • Меньшее количество соединений и элементов
  • Низкое потребление
  • Возможность интеграции на подложке интегральных схем драйверов

Производство LTPS TFT ЖКИ

На приведенном ниже рисунке показана структурная схема производства LTPS TFT ЖКИ.

Современный рынок мобильных устройств переполнен количеством разнообразных изделий, что отличаются друг от друга на аппаратном или программном уровне. Если на заре телефонии мобильные подбирались преимущественно по принципу лучшего дизайна, то у большинства сегодняшних смартфонов, как минимум, схожий внешний вид и достаточная оригинальность. В связи с этим выбор делается в пользу эксплуатационных и функциональных особенностей.

Обратите внимание

Один из важных критериев выбора ставит перед покупателем вопрос о том, какой экран лучше для смартфона и насколько он будет удобен в использовании. Далее в статье детальнее рассмотрены физико-технические характеристики типовых дисплеев с доступным и понятным анализом, что упростит выбор смартфона по данному критерию.

Разновидности дисплеев (матриц)

На сегодняшний день широкую популярность приобрели следующие функциональные типы матриц:

  • TN+film (далее TN);
  • AMOLED.

Первые два типа привычно называть жидкокристаллическими (ЖК), поскольку они работают на базе жидких кристаллов. Что касается AMOLED, то это технология, структурно состоящая из органических светодиодов (OLED).

Важно знать

Очень часто в различных обзорах присутствует информация о TFT-матрицах. Изначально сравнение TFT-технологии (thin-film transistor) с любой из вышеперечисленных является неверным. TFT – это основа для разработки других технологий.

Теперь при рассмотрении того, какая технология экрана смартфона лучше, можно говорить, что в любом случае рассматриваются TFT-дисплеи. Ранее при их изготовлении задействовали аморфный кремний, но при обновлении технологий производители пришли к использованию поликристаллического материала (LTPS-TFT). Ключевые преимущества:

  • снижение энергопотребления;
  • минимизация физических размеров отдельных элементов;
  • увеличение параметра плотности пикселей (ppi – количество пикселей на дюйм дисплея).

Будет полезным

«Первопроходцем» на базе матрицы LTPS-TFT стал OnePlus One (2014 год), за все свои характеристики прозванный «убийцей флагманов».

Чтобы понять, какой экран смартфона лучше – IPS или AMOLED, а также чтобы учесть их ключевые отличия от дисплеев, созданных по технологии TN, необходимо детальнее рассмотреть каждый из видов.

ЖК дисплеи (LCD)

Независимо от того, какая именно из матриц (TN или IPS) рассматривается, принцип действия у LCD-дисплеев идентичен:

  • в молекулы жидких кристаллов подаётся ток;
  • его сила влияет на яркость субпикселей;
  • излучаемый свет проходит через светофильтры, что позволяет окрасить волну в определенный цвет.

Обратите внимание

Оценка того, какой экран лучше для смартфона, выполняется в соответствии с современными реалиями производства по данному направлению.

TN+film

Матрица TN стала началом истории ЖК-дисплеев. Она обладает простейшими техническими характеристиками:

  • малые углы обзора, не превышающий 60° от вертикального взгляда на плоскость экрана, с инвертированием изображения при незначительных отклонениях;
  • недостаточная контрастность;
  • плохая цветопередача.

Важно знать

Свою актуальность данная технология потеряла, хотя и продолжает использоваться в наиболее бюджетных моделях девайсов.

IPS

Более двух десятилетий назад была представлена новая технология IPS. По сей день её регулярно модифицируют с целью улучшения и оптимизации. Популярными являются дисплеи на базе AH-IPS (производитель LG) и PLS (производитель SAMSUNG).

Обратите внимание

Указанные версии модификации так схожи между собой, что между компаниями началось судебное разбирательство.

Если не вдаваться в детали вопроса, какая технология экрана смартфона лучше и почему, можно выделить следующие возможные (достигаются при максимальной оптимизации технологии) качественные характеристики современных IPS-матриц:

  • широкие углы обзора (значение близится к 180°) с минимумом искажений даже при самом сильном отклонении;
  • высококачественная цветопередача;
  • повышенная плотность пикселей, увеличиваемая с каждой новой (улучшенной) модификацией.

Производители редко делятся сведениями об особенностях IPS-матрицы, установленной в их продукте. Однако различия между дисплеями из разных ценовых категорий можно увидеть невооруженным взглядом, а потому пользователь обязан знать, какой тип экрана смартфона лучше.
Самые дешевые IPS-матрицы обладают следующими недостатками:

  • картинка выцветает при наклоне экрана;
  • точность цветопередачи в целом не оптимальна: может прослеживаться «блёклость» или «кислотность».

Важно знать

OLED-технология

Однозначно выигрывает любую конкуренцию в вопросе того, какая технология экрана смартфона лучше, AMOLED-матрица. Данный тип дисплея строится на технологии OLED, подразумевающей использование органических светодиодов. Первым «победным» качественным отличием таких экранов можно считать отсутствие необходимости в подсветке пикселей. Благодаря этому функциональные элементы уменьшаются в размерах, толщина матрицы минимизируется. Однако это не единственный аргумент в споре о том, какой экран смартфона лучше – IPS или AMOLED.

Обратите внимание

В любом случае технология AMOLED-дисплея строится на базе TFT, поскольку её сочетание с OLED позволяет осуществлять индивидуальное управление над каждым из субпикселей. Благодаря такой особенности можно полностью отключать субпиксели, передавая максимально глубокий черный цвет.

Среди значимых преимуществ над дисплеями IPS стоит отметить уменьшенную цветопередачу, что реализуется именно за счет вышеописанной возможности отключения субпикселей. При задействовании темных цветов в оформлении интерфейса смартфона потребление заряда снижается в несколько раз.

Другое качественное преимущество сразу же стало функциональной проблемой. В процессе эксплуатации самых первых AMOLED-матриц была замечена чрезмерная насыщенность цветов, которая не являлась естественной. Проблему производители быстро решили, но даже сегодня существуют смартфоны, в которых приходится выполнять ручную настройку насыщенности, чтобы сделать цветопередачу более естественной (ближе к той, что выдают IPS-дисплеи).

Важно знать

Существует у AMOLED-технологии и ограничение, связанное с функционалом отдельных элементов, тех самых органических светодиодов. В зависимости от того, какие цвета чаще воспроизводятся каждым из них, возникают перепады в предельном сроке службы таких элементов. К примеру, в районе интерфейсной панели уведомлений такие светодиоды выгорают быстрее, сохраняя за собой остаточное изображение. Правда, и эту проблему производители решили, увеличив минимальный срок службы элемента до 3 лет (речь о времени беспрерывной активности).

По итогам всего вышесказанного, можно сделать ряд выводов:

  • высочайшее качество обеспечивает OLED-технология;
  • продолжает развиваться и является наиболее актуальной с точки зрения показателей «цена-качество» IPS-технология;
  • морально устарела и не способна к конкуренции – TN+film.

Естественно, за пользователем остаётся право выбора, но ключевые аргументы можно подчеркнуть из данного материала. Далее будут представлены сведения о нескольких смешных особенностях современных дисплеев и перспективах развития данной сферы производства, что позволит полностью осознать, какой тип экранов смартфонов лучше.

Также выбирать, какой экран лучше для смартфона, стоит на основании следующих смежных параметров:

  • Отсутствие воздушной прослойки между сенсором и дисплеем. Максимально увеличивается яркость и углы обзора, а также улучшается цветопередача. Естественно, уменьшается общая толщина всей системы передачи изображения (лучше всего получается у Samsung). Проблема: сложность замены модуля.
  • Форма дисплея. Началось всё с появления 2,5D-стёкол – загнутых по краям. Передаваемое изображения кажется безграничным, что усиливает ощущения зрительного аппарата пользователя. В современных модификациях речь идёт уже о загибании всего модули вместе с сенсором – безрамочная технология.
  • Усиленная чувствительно сенсора. Лучшие вариации позволяют работать со смартфоном не только рукой. Когда доступ к интерфейсу устройства возможен даже в перчатках, вопрос о том, какой экран лучше для смартфона, кажется нецелесообразным.
  • Разрешение дисплея. Данный параметр указывает на количество пикселей относительно реальных физических размеров дисплея. Его можно ассоциировать с плотностью пикселей в процессе выбора, если исходных данных о конкретной модели меньше, чем нужно для аргументированного её приобретения. В данном случае всё просто: «Какое разрешение экрана лучше для смартфона?» – «Наибольшее».
  • Размер диагонали. Данный показатель не должен быть в приоритете над разрешением и плотностью пикселей, поскольку его доминация над указанными параметрами может привести к возникновению видимых дефектов. С эксплуатационной точки зрения, чем больше дисплей, тем сложнее его использовать одной рукой.

Цвет излучения такого элемента подбирается посредством изменения размеров и материала изготовления квантовой точки (в неограниченном диапазоне). На сегодняшний день это самая дорогостоящая технология с максимально возможными из доступных на рынке качеств.

Говоря о том, какое разрешение экрана лучше для смартфона, естественно, можно отдавать однозначное предпочтение в пользу QLED. Дисплеи, созданные по этой технологии, уже давно имеют разрешение ULTRA HD и отмечаются всеми возможными преимуществами. Однако среднестатистический пользователь будет ориентироваться на ценовые показатели, а потому лучше придерживаться ранее данных советов относительно плотности пикселей и прочих параметров дисплея.

К 2018 году соперничество между экранными технологиями свелось к тому, что на рынке осталось всего два достойных варианта. TN матрицы были вытеснены, VA в мобильных аппаратах не использовались, а чего-то нового еще не придумали. Поэтому конкуренция развернулась между IPS и AMOLED. Тут стоит напомнить, что IPS, LCD LTPS, PLS, SFT – это то же самое, как и OLED, Super AMOLED, P-OLED и т.д. являются лишь разновидностями светодиодной технологии.

На тему того, что же лучше, IPS или AMOLED, . Но технологии не стоят на месте, поэтому в 2018 году не будет лишним внести коррективы и сделать разбор с учетом сегодняшних реалий. Ведь оба типа матриц постоянно совершенствуются, избавляются некоторых недостатков или эти минусы становятся менее существенными.

Что лучше для смартфона, IPS или AMOLED, сейчас попробуем выяснить. Для этого взвесим все плюсы и минусы каждой из технологий, чтобы по перевесу сильных сторон выявить абсолютного лидера или, с учетом специфики, решить, что лучше в конкретных условиях.

Плюсы и минусы IPS дисплеев

Разработка и совершенствование IPS дисплеев длится уже два десятилетия, и за это время технология успела обзавестись рядом плюсов.

Преимущества матриц IPS

IPS матрицы являются лучшими среди всех типов ЖК-панелей благодаря ряду достоинств.

  • Доступность . За годы развития технологию массово освоили многие компании, сделав массовый выпуск экранов IPS недорогим. Стоимость экрана для смартфона с разрешением FullHD сейчас стартует с отметки около $10. Благодаря низкой цене такие экраны делают смартфоны более доступными.
  • Цветопередача . Хорошо откалиброванный IPS экран передает цвета с максимальной точностью. Именно поэтому профессиональные мониторы для дизайнеров, графиков, фотографов и т. д. выпускаются на IPS матрицах. Они обладают наибольшим охватом оттенков, что позволяет получить на экране реалистичные цвета объектов.
  • Фиксированное энергопотребление . Жидкие кристаллы, формирующие картинку на IPS экране, почти не потребляют ток, основным потребителем являются диоды подсветки. Поэтому расход энергии не зависит от изображения на дисплее и определяется уровнем подсветки. Благодаря фиксированному расходу энергии IPS экраны обеспечивают примерно одинаковую автономность при просмотре фильмов, веб-серфинге, письменном общении и т.д.
  • Долговечность . Жидкие кристаллы почти не подвержены процессу старения и износа, поэтому в плане надежности IPS лучше, чем AMOLED. Деградировать могут светодиоды подсветки, но срок службы таких LED весьма велик (десятки тысяч часов), поэтому даже за 5 лет экран почти не теряет в яркости.

Примером смартфона с хорошим IPS-экраном является флагман 2019 года Huawei Mate 20.

Недостатки IPS матриц

Несмотря на весомые плюсы, есть у IPS и минусы. Эти недостатки являются фундаментальными, поэтому путем совершенствования технологии они не устраняются.

  • Проблема чистоты черного цвета . Жидкие кристаллы, которые отображают черный цвет, блокируют свет от подсветки не на 100%. Но так как подсветка IPS экрана общая для всей матрицы, ее яркость не снижается, панель остается подсвеченной, в итоге черный цвет получается не очень глубокий.

  • Низкая контрастность . Уровень контрастности ЖК-матриц (примерно 1:1000) приемлем для комфортного восприятия картинки, но по этому показателю AMOLED лучше IPS. Из-за того, что черный не очень глубокий, разница между самым ярким и самым темным пикселем у таких экранов заметно меньше, чем у светодиодных матриц.
  • Большое время отклика . Скорость реакции пикселей у IPS панелей невысока, порядка десятка миллисекунд. Этого хватает для нормального восприятия картинки при чтении или просмотре видео, но маловато для VR-контента и других требовательных задач.

Плюсы и минусы дисплеев AMOLED

В основе технологии OLED лежит использование массива миниатюрных светодиодов, расположенных на матрице. Они независимы, поэтому предлагают ряд преимуществ над IPS, но не лишены и минусов.

Преимущества AMOLED матриц

Технология AMOLED новее, чем IPS, и ее создатели позаботились об устранении минусов, характерных для ЖК-дисплеев.

  • Раздельное свечение пикселей . В AMOLED экранах каждый пиксель сам является источником света и управляется системой независимо от других. При отображении черного цвета он не светится, а при показе смешанных оттенков может выдавать повышенную яркость. За счет этого AMOLED экраны демонстрируют лучшую контрастность и глубину черного.

  • Почти мгновенная реакция . Скорость отклика пикселей на светодиодной матрице на порядки выше, чем у IPS. Такие панели способны отображать динамичную картинку с высокой частотой смены кадров, делая ее более гладкой. Эта возможность – плюс в играх и при взаимодействии с VR.
  • Сниженное потребление энергии при показе темных тонов . Каждый пиксель матрицы AMOLED светится независимо. Чем светлее его цвет – тем ярче пиксель, поэтому при показе темных тонов такие экраны потребляют меньше энергии, чем IPS. А вот в процессе отображения белого AMOLED панели демонстрируют схожий, или даже больший, чем у IPS, расход заряда батареи.
  • Малая толщина . Так как у AMOLED матриц нет слоя, рассеивающего свет подсветки на жидкие кристаллы, такие дисплеи имеют меньшую толщину. Это позволяет уменьшить габариты смартфона, сохранив его надежность и не жертвуя емкостью аккумулятора. Кроме того, в перспективе возможно создание гибких (а не только изогнутых) матриц AMOLED. Для IPS это невозможно.

Одни из лучших дисплеев OLED, как правило, достаются топовым устройствам Samsung, так как именно эта компания является лидером в их производстве. Достойными матрицами оснащены Samsung Galaxy S10, а также другие модели средней и верхней ценовой категории.

Samsung Galaxy S10

Недостатки AMOLED-матриц

Свойственны AMOLED-матрицам и недостатки, причем виновник большинства бед один. Это – синие светодиоды. Освоение их производства дается сложнее, а по качеству они уступают зеленым и красным.

  • Синева или ШИМ . Выбирая смартфон с AMOLED экраном, приходится выбирать между широтно-импульсной регулировкой яркости и голубизной светлых тонов. Все из-за того, что при непрерывном свечении синие субпиксели воспринимаются сильнее, чем красные и зеленые. Исправить это можно с помощью использования ШИМ-регулировки яркости, но тогда всплывает другой недостаток. На максимальной яркости экрана ШИМ нет или частота регулировки достигает около 250 Гц. Этот показатель находится на границе восприятия и почти не влияет на глаза. А вот при снижении уровня подсветки – снижается и частота ШИМ, в итоге на низких уровнях мерцания с частотой около 60 Гц могут приводить к усталости глаз.
  • Выгорание синего . Тут тоже проблема в синих диодах. Их срок службы меньше, чем зеленых и красных, поэтому со временем возможно искажение цветопередачи. Экран уходит в желтизну, баланс белого сдвигается в сторону теплых тонов, общая цветопередача ухудшается.
  • Эффект памяти . Так как миниатюрные светодиоды склонны к выгоранию, места на экране, которые отображали яркую статичную картинку (например, часы или индикатор сети светлого цвета), со временем могут терять яркость. В результате даже если элемент не отображается, в этих местах виднеется силуэт этого элемента.

  • PenTile . Структура PenTile не является фундаментальным минусом всех панелей AMOLED, но пока характерна для большинства из них. При такой структуре матрица содержит неодинаковое число красных, зеленых и синих субпикселей (у Samsung синих вдвое меньше, у LG – вдвое больше). Основной мотив использования PenTile – желание компенсировать недостатки синих LED. Однако побочным эффектом данного решения становится снижение четкости картинки, особенно заметное в VR-гарнитурах.
.

Samsung Galaxy S8

С учетом всех особенностей обоих типов матриц можно отметить, что IPS с высоким разрешением лучше, если вас интересует VR и нужна максимальная четкость картинки. Ведь у AMOLED комфортному восприятию виртуальной реальности немного препятствует PenTile, и ШИМ подсветки пока нивелирует мгновенную скорость реакции. Также IPS лучше, если вам приходится больше работать со светлыми тонами (веб-серфинг, мессенджеры).

За экранами AMOLED будущее, но пока технология не идеальна. Однако можно смело покупать смартфон со светодиодным экраном, особенно если это флагман. Яркость, контрастность, глубокий черный и экономия энергии при показе темных тонов способны перекрыть все минусы OLED.

В последнее время, появилось множество аббревиатур для обозначения типов дисплеев мобильных устройств, что в свою очередь нередко усложняет задачу выбора типа дисплея при покупке мобильного телефона. В данной статье мы попытаемся разобраться какие же бывают типы экранов для мобильных устройств, чтобы помоч определиться с выбором экрана телефона.

В настоящее время из наиболее распространенных технологий можно выделить всего две, это экраны на основе LCD (ЖК дисплеи) и OLED (дисплеи на органических полупроводниках). Главное отличие от LCD - нет ламп подсветки, в OLED дисплеях светятся непосредственно элементы поверхности.

Итак, рассмотрим дисплеи каждой технологии в отдельности.

LCD (liquid cristal display) , то есть дисплеи на основе жидких кристаллов (ЖК). Жидкие кристаллы, как и твердые имеют строго определенную структуру кристаллической решетки и прозрачны для света. Но, в отличие от других кристаллов, жидкие могут изменять структуру под внешним воздействием (электрического тока или температуры), закручиваться, становясь при этом непрозрачными. Управляя током, можно создавать на экране надписи или картинки. Но стоит отметить что LCD дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки их обязательный атрибут. Из-за сокращения габаритов лампа обычно находится с боку, а напротив нее зеркало, поэтому большинство LCD-матриц в центре имеют яркость выше, чем по краям.

LCD-дисплеи также делятся на два вида: активные и пассивные . К пассивным матрицам относятся STN (Super Twisted Nematic) , это технология скрученных кристаллов. Этот тип матриц называется пассивным, поскольку он не способен достаточно быстро отображать информацию из-за большой электрической емкости ячеек, напряжение на них не может изменяться достаточно быстро, поэтому картинка обновляется медленно. Как правило, STN дисплеи имеют меньшее разрешение, и отображают значительно меньшее количество цветов. Также из недостатков этих матриц можно отметить маленький угол обзора экрана и плохую видимость при ярком солнечном свете. А из достоинств данного типа дисплеев можно отметить достаточно малый расход энергии и небольшую стоимость, поэтому они активно используются в недорогих телефонах.

CSTN (Color Super Twist Nematic) - это более продвинутая STN технология. Первые CSTN-дисплеи имели большое время отклика. В настоящее же время дисплеи с CSTN-матрицами предоставляют меньшее время отклика, широкий угол видимости и высококачественные цвета, почти не уступающие TFT экранам.

FSTN (Film Super Twisted Nematic) - также более продвинутая STN технология, отличается только тем, что у FSTN-матриц с внешней стороны есть специальная пленка, которая позволяет компенсировать цветовые сдвиги, т.е. это матрица с пленочной компенсацией, которая позволяет улучшить угол обзора, но время отклика все также велико.

DSTN (Dual Super Twisted Nematic) - усовершенствованная STN технология. В такой матрице одна двухслойная ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в «запертом» состоянии, теряет значительно большую часть своей энергии. Контрастность и разрешающая способность DSTN матриц достаточно высокая.

Также к пассивным матрицам относится собственная технология Samsung UFB (Ultra Fine and Bright). Дисплеи созданные по этой технологии обладают повышенной яркостью и контрастностью (способны отображать 262 тысячи цветов), при этом потребляемая мощность снижена по сравнению с традиционными LCD, а также себестоимость их производства не велика.

К активным матрицам относятся TFT (Thin Film Transistors) - тип ЖК дисплея, в активной матрице которого, используются тонкоплёночные прозрачные транзисторы. то есть под поверхностью экрана располагается слой тонкопленочных транзисторов, каждый из которых управляет одной точкой экрана. Таким образом, в цветном дисплее телефона их количество может достигать нескольких десятков, а то и сотен тысяч.

Принцип работы TFT-матрицы заключается в управлении интенсивностью светового потока с помощью его поляризации. Изменение вектора поляризации осуществляют жидкие кристаллы в зависимости от приложенного к ним электрического поля. На каждый пиксель приходится по три транзистора, каждый из которых соответствует одному из трех RGB цветов и конденсатор, поддерживающий необходимое напряжение.

TFT матрицы ускорили работу дисплея, но остались и проблемы, такие как цветопередача, углы обзора, а также битые пиксели - когда выходит из строя транзистор. Для борьбы с искажением цветов при изменении обзора по вертикали было разработано два метода: MVA (Multi Domain Alignment) - т.е. в данном методе рабочую ячейку разбили на две зоны которые управляются одновременно, но ЖК в кажой из них ориентированы по разному. Но проблема всеравно решилась не полностью, метод поворота ЖК в одной плоскости IPS (In-Plane Switching) оказался более удачным в плане общей цветопередачи и в особенности, в отображении тёмных тонов. В данном методе управляющие электроды разместили на одной поверхности таким образом, что силовые линии возникающего электрического поля принимают горизонтальную форму. При подаче управляющего напряжения ЖК разворачиваются в одной плоскости. Запертая ячейка IPS-панели пропускает значительно меньше света, чем ячейка MVA, а общая передаточная характеристика выглядит более плавно и без провалов. Дальнейшее совершенствование этой технологий породило семейство S-IPS, SFT, A-SFT и SA-SFT.

TFD (Thin Film Diode) - технология производства ЖК-дисплеев с использованием тонкопленочных диодов. Она аналогична технологии TFT, но здесь транзисторы заменены тонкопленочными управляющими диодами. Основной особенностью таких дисплеев является пониженное энергопотребление.

LTPS (Low Temperature Poly Silicon) - технология производства LCD TFT-дисплеев с использованием низкотемпературного поликристаллического кремния. Т.е. данная технология позволяет разместить на стекле дисплея большое число транзисторов из кристаллов кремния, который подвергают для этого большой температуре (лазерный отжиг). Данная технология обеспечивает повышенную яркость изображения и пониженное энергопотребление.

Постепенно теснить LCD-экраны стала новая технология OLED (Organic Light Emitting Diodes) т.е. дисплеи на органических светоизлучающих полупроводниках. Главное отличие от LCD-экранов не нужны лампы подсветки, в новых дисплеях светятся непосредственно элементы поверхности. И светятся в десятки раз ярче, чем ЖК-экраны, при этом потребляя гораздо меньше электроэнергии, а также обеспечивают хорошую цветопередачу, высокую контрастность и большой угол обзора (до 180 градусов). Из недостатков можно отметить относительно низкое время жизни, хотя для телефона вполне достаточно.

OLED-дисплей представляет собой цельное устройство, состоящее из нескольких очень тонких органических пленок, заключенных между двумя проводниками. Подача на эти проводники небольшого напряжения (порядка 2-8 вольт) и заставляет дисплей излучать свет. Основу OLED-матрицы составляют полимерные материалы. В настоящее время в основном развиваются две технологии, показавшие наибольшую эффективность и отличающиеся используемыми органическими материалами, это полимеры (PLED) и микромолекулы (sm-OLED).

Технология органических дисплеев лишена большинства недостатков, характерных для ЖК-дисплеев, и обеспечивает гораздо лучшие характеристики изображения. Из достоинств можно отметить высокую яркость и контрастность, компактность и легкость, толщина дисплея не превышает 1 мм, механическая прочностью, и даже гибкость, а также в отличие от существующих TFT и STN дисплеев, OLED-дисплеи потребляют заметно меньше энергии. Из недостатков OLED-дисплеев это высокая стоимость.

Существующие модели, как и в случае с ЖКИ, разделяются по типу управляющей матрицы. Есть OLED с пассивными, а есть и с активными матрицами (TFT). Принцип работы матрицы такой же, но вместо слоя жидких кристаллов используется слой органических полупроводников. TFT OLED - одни из самых быстрых, обеспечивают просто потрясающую картинку, и также хорошо показывают при солнечном освещении.

Теперь после рассмотрения основных типов и технологий дисплеев мобильных телефонов, задача выбора телефона упрощается. Так если вам необходим телефон просто для совершения звонков, то стоит рассматривать более дешевые модели на технологии STN, такой телефон будет к тому же меньше потреблять энергии и тем самым его нужно реже заряжать. Если же вам нужен не очень дорогой телефон, но с множеством современных функций и хорошим качеством, то стоит присмотреться к телефонам с LCD TFT экраном. Ну а если вы можете себе позволить очень дорогие модели телефонов с сответственно очень высоким качеством изображения для просмотра фото и видео в высоком качестве, то стоит присмотреться к OLED TFT дисплеям, хотя также можно рассмотреть и LCD IPS экраны и т.д.

Современные устройства оснащаются экранами различной конфигурации. Основными на данный момент являются дисплеи на базе но для них могут использоваться разные технологии, в частности речь идет о TFT и IPS, которые различаются по целому ряду параметров, хоть и являются потомками одного изобретения.

Сейчас существует огромное количество терминов, которые обозначают определенные технологии, скрывающиеся под аббревиатурами. К примеру, многие могли слышать или читать об IPS или TFT, однако мало кто понимает, в чем на самом деле разница между ними. Связано это с недостатком информации в каталогах электроники. Именно поэтому стоит разобраться с этими понятиями, а также решить, TFT или IPS - что лучше?

Терминология

Для определения того, что будет лучше или хуже в каждом отдельном случае, требуется узнать, за какие функции и задачи отвечает каждый IPS по факту представляет собой TFT, точнее ее разновидность, при изготовлении которой использовалась определенная технология - TN-TFT. Следует рассмотреть более подробно эти технологии.

Различия

TFT (TN) представляет собой один из способов производства матриц то есть экранов на тонкопленочных транзисторах, в которых элементы располагаются по спирали между парой пластин. При отсутствии подачи напряжения они будут повернуты друг к другу под прямым углом в горизонтальной плоскости. Максимальное напряжение вынуждает кристаллы поворачиваться так, чтобы проходящий сквозь них свет приводил к образованию черных пикселей, а при отсутствии напряжения - белых.

Если рассматривать IPS или TFT, то отличие первой от второй состоит в том, что матрица изготовлена на базе, описанной ранее, однако кристаллы в ней расположены не спирально, а параллельно единой плоскости экрана и друг другу. В отличие от TFT, кристаллы в данном случае не поворачиваются в условиях отсутствия напряжения.

Как мы это видим?

Если смотреть на IPS или то визуально отличие между ними состоит в контрастности, которая обеспечивается почти идеальной передачей черного цвета. На первом экране изображение будет выглядеть более четким. А вот качество цветопередачи в случае использования матрицы TN-TFT нельзя назвать хорошим. В данном случае у каждого пикселя имеется собственный оттенок, отличный от других. Из-за этого цвета сильно искажаются. Однако есть у такой матрицы и достоинство: она характеризуется самой высокой скоростью отклика среди всех существующих на данный момент. Для экрана IPS требуется определенное время, за которое все параллельные кристаллы совершат полный разворот. Однако человеческий глаз практически не улавливает разницу во времени отклика.

Важные особенности

Если говорить о том, что лучше в эксплуатации: IPS или TFT, то стоит отметить, что первые являются более энергоемкими. Это связано с тем, что для поворота кристаллов требуется немалое количество энергии. Именно поэтому, если перед производителем стоит задача сделать свое устройство энергоэффективным, в нем обычно применяется TN-TFT матрица.

Если выбирать экран TFT или IPS, то стоит отметить более широкие углы обзора второго, а именно 178 градусов в обеих плоскостях, это очень удобно для пользователя. Другие оказались неспособными обеспечить подобное. И еще одним существенным различием между двумя этими технологиями является стоимость изделий на их основе. TFT-матрицы на данный момент представляют собой наиболее дешевое решение, которое используется в большинстве бюджетных моделей, а IPS относится к более высокому уровню, но и он не является топовым.

Дисплей IPS или TFT выбрать?

Первая технология позволяет получать максимально качественное, четкое изображение, но требует больше времени для поворота используемых кристаллов. Это влияет на время отклика и прочие параметры, в частности скорость разрядки аккумулятора. Уровень цветопередачи TN-матриц гораздо ниже, однако их время отклика минимально. Кристаллы тут расположены по спирали.

На самом деле можно легко отметить невероятную пропасть в качестве экранов, работающих на базе двух этих технологий. Касается это и стоимости. Технология TN остается на рынке исключительно из-за цены, однако она не способна обеспечить сочную и яркую картинку.

IPS - это весьма удачное продолжение в развитии TFT-дисплеев. Высокий уровень контрастности и довольно большие углы обзора - это дополнительные преимущества данной технологии. К примеру, у мониторов на базе TN иногда черный цвет сам изменяет свой оттенок. Однако высокое потребление энергии устройствами, работающими на базе IPS, вынуждает многих производителей прибегать к использованию альтернативных технологий либо понижать этот показатель. Чаще всего матрицы данного типа встречаются у проводных мониторов, которые не работают от аккумулятора, что позволяет не быть устройству настолько энергозависимым. Однако постоянно ведутся разработки в этой области.